
1. Tentative Abstract  

The human brain is able to perform diverse computations – visual, auditory and other sensory 
processing; task and strategic planning; abstract thought; coarse and fine motor control – 
using less than 15-20W of power, and with electronic signals that are so low in potential they 
are essentially indistinguishable from noise.  There is no doubt that the brain’s operations 
must in some sense be stochastic; that is to say, there is an intrinsic degree of randomness in 
the signals, and all computations are to some extent probabilistic.  Modern electronics, on the 
other hand, are designed to operate in a deterministic fashion, so that noise is eliminated or 
otherwise overcome, and all computations proceed in a predictable and repeatable fashion. As 
integrated circuit technologies improve, and device sizes become smaller, the potentials used 
also become lower and hence noisier; and the likelihood of device mismatch grows (the 
manufacturing yields, in terms of the percentage of chips which are functional, also fall).  
There is a consensus that the current electronic paradigm will sooner or later be limited by the 
noise and randomness that are intrinsic to the physics of nanoscale structures. Neuromorphic 
systems offer an alternative path in this respect, in that by modeling the brain’s function, they 
benefit from its robustness to noise and structural randomness.  A simple example is IBM’s 
TrueNorthneuromorphic chip, which even in prototype manufacturing is achieving yields 5-10 
times higher than equivalent FPGA chips of the same size and process complexity (because it 
is not necessary for every single module of the chip to work perfectly, for it to be functional).  
We have recently performed a review of electronic methodologies that similarly can cope, or 
even benefit from, electronic noise and structural randomness.In this presentation we describe 
a method for building neural networks, both in software and hardware, which intrinsically make 
use of structural mismatch randomness to achieve their functionality.  The randomness is 
used to create multiple nonlinear projections of input signals.  A synthesis or learning 
algorithm is then used to find a linear combination of these nonlinear projections that satisfies 
the input-output requirements of the network.  

Several applications and implementations of these networks will be described.  We have 
used them for keyword spotting in event (spike)-based auditory representations; for natural 
language processing of sentences; and for decoding of electrophysiological signals.  We 
have implemented them in a number of technologies, including custom VLSI silicon and on 
FPGA technologies.  Examples will also be given of biological neural structures in which 
these random projection networks appear to exist, and some theoretical considerations for 
their presence and application will be addressed. 
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2. Brief Biography 

Jonathan Tapson received his B.S, M.S and PhD degrees from the University of Capetown, 
South Africa in 1986, 1988 and 1994 respectively. He is currently serving as the Director, The 
MARCS Institute and Professor in the department of Electrical and Electronic Engineering at 
University of Western Sydney, Australia. His research area is in electronic sensors and 
systems, and particularly bio-inspired sensors. He has published over 100 peer-reviewed 
articles and holds 11 patents. His research has led to the founding of three spin-out companies, 
and he remains very interested in start-up entrepreneurship. His current research activity 
focuses on networks which can learn to make decisions in the same way that the human brain 
performs this task. 

3. List of Representative Publications 

1. 1. Tapson, J., Cohen, G. and Van Schaik, A., “ELM solutions for event-based 
systems,” Neurocomputing, vol. 149(Part A), pp. 435-442, Feb 2015. 

2. 2. Tapson, J. and Van Schaik, A., “Online and adaptive pseudoinverse solutions for 
ELM weights,” Neurocomputing, vol. 149(Part A), pp. 233-238, Feb 2015. 

3. 3. Hamilton, T., Afshar, S., Van Schaik, A. and Tapson, J., “Stochastic electronics : a 
neuro-inspired design paradigm for integrated circuits,” Proceedings of the Institute of 
Electrical and Electronics Engineers, vol. 102, no. 5 , pp 843-859, 2014. 

4. 4. Wang, R., Hamilton, T., Tapson, J. and Van Schaik, A., “A mixed-signal 
implementation of a polychronous spiking neural network with delay adaption,” 
Frontiers in Neuroscience, vol. 8, no. 51, 2014. 

5. 5. Stiefel, K., Tapson, J. and Van Schaik, A., “Temporal order detection and coding in 
nervous systems,” Neural Computation, vol. 25, no. 2 , pp 510-531, 2013. 

6. 6. Tapson, J. and Van Schaik, A., “Learning the pseudoinverse solution to network 
weights,” Neural Networks, vol. 45, pp. 94-100, 2013. 

7. 7. Rapson, M., Tapson, J. and Karpul, D., “Unification and extension of monolithic 
state space and iterative cochlear models,” Journal of the Acoustical Society of 
America, vol. 131, no. 5, pp. 3935-3952, 2012. 

8. 8. Russell, A., Orchard, G., Tapson, J., Niebur, S., Mihalas, R. and 
Etienne-Cummings, R., “Optimization methods for spiking neurons and networks,” 
IEEE Transactions on Neural Networks, vol. 21, no. 12, pp. 1950-1962, 2010. 

 


